
Max-Planck-Institut für Informatik
Computer Graphics Department
Saarbrücken, Germany

Real-time Hierarchical Stereo Matching
on Graphics Hardware

Diploma Thesis in Computer Science

Computer Science Department
University of Saarland

Lukas Heidenreich

Supervisors: Gernot Ziegler
Dr. Christian Theobalt
Prof. Dr. Hans-Peter Seidel

Max-Planck-Institut für Informatik
Computer Graphics Department
Saarbrücken, Germany

Begin: March 1, 2006
End: February 27, 2007

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Diplomarbeit
selbständig und ohne fremde Hilfe verfasst habe. Ich habe dazu keine weiteren
als die angeführten Hilfsmittel benutzt und die aus anderen Quellen entnomme-
nen Stellen als solche gekennzeichnet.

Saarbrücken, den 27. Februar, 2007

Lukas Heidenreich

Abstract

Stereo matching is a well-known problem in computer vision, and many re-
searchers deal with finding good algorithms for solving it. The disadvantage of
most approaches is the long time they need for detecting correspondences on com-
mon computer systems. Thus, stereo matching in real-time systems is often not
possible. One possibility for speeding up the algorithms is the use of modern
graphics hardware.

This thesis describes a stereo matching algorithm that runs completely on
graphics hardware, and calculates dense depth maps of a stereo pair of arbitrar-
ily placed calibrated cameras in real-time, so it can be used for processing image
sequences or video streams. Starting with the computation of small-sized depth
maps from box-filtered images, we use a hierarchical approach and propagate
repeatedly computed depths to calculate the final correct depth. Through the fil-
tering of outliers after every step, we can further improve the calculation of the
final depth map. This map can then be used for reconstructing the captured scene.
Finally, the algorithm is applied with different settings on several stereo sets to
measure its quality and speed.

i

ii ABSTRACT

Acknowledgment

First, I want to thank my supervisor Gernot Ziegler for his continuous support dur-
ing the development of this thesis. Many thanks go to Prof. Dr. Hans-Peter Seidel
and Dr. Christian Theobalt for giving me the possibility to write this thesis at the
MPI’s Computer Graphics Department. Furthermore, I thank all my colleagues of
the working group for answering the questions I had. Finally, I want to thank my
family and friends for supporting and encouraging me throughout my studies.

iii

iv ACKNOWLEDGMENT

Contents

Abstract i

Acknowledgment iii

1 Introduction 1

2 Background 3
2.1 The Camera Model . 3

2.2 Radial Lens Distortion . 5

2.3 Epipolar Stereo Geometry . 6

2.3.1 General Setup . 6

2.3.2 Parallel Setup . 7

2.3.3 Image Rectification . 7

2.4 OpenGL API . 9

2.4.1 Processing Pipeline . 9

2.4.2 Vertex and Fragment Shader 10

2.4.3 Coordinate Systems . 11

2.4.4 Projective Texture Mapping 12

2.4.5 Mipmaps . 13

2.4.6 Framebuffer Objects . 13

2.4.7 Image Processing . 14

3 Related Work 17
3.1 Overview . 17

3.2 Hierarchical and GPU based algorithms 19

v

vi CONTENTS

4 Camera Calibration 21
4.1 Matlab Camera Calibration Toolbox 21
4.2 GeoCast . 22
4.3 Converting camera parameters to GeoCast 23
4.4 Lens distortion parameters in GeoCast 24

5 The Stereo Matching Algorithm 25
5.1 Image Ray Color Values . 25
5.2 Projective Texturing Precomputation 27
5.3 Restricting Search Space . 28
5.4 Preprocessing of Input Data . 29
5.5 Stereo Matching . 31

5.5.1 Matching Cost Calculation 31
5.5.2 Depth Map Postprocessing 32

5.6 Scene Reconstruction . 32
5.7 Disparity Maps . 33

6 Results 35
6.1 Middlebury Data Set . 35
6.2 Synthetic Data . 42
6.3 Video Data . 45

7 Conclusion and Future Work 47

A Shader Source Codes 49
A.1 Vertex Shader for positioning the sweeping rectangle 49
A.2 Fragment Shader for Coordinates Precomputation 51
A.3 Fragment Shader for Radial Undistorting 52
A.4 Fragment Shader for Mean Filtering 53
A.5 Fragment Shader for Stereo Matching 54
A.6 Fragment Shader for Median Filtering 57
A.7 Vertex Shader for Mesh Warping 59

List of Tables

6.1 Percentage of ”bad” pixels in non-occluded regions for the Mid-
dlebury data set. 37

6.2 Depth map rendering time and Mde/s. 37
6.3 Depth maps and errors of the “Teddy” scene (3 & 4 convolutions). 40
6.4 Depth maps and errors of the “Teddy” scene (5 & 6 convolutions). 41
6.5 Depth map rendering time and Mde/s. 43

vii

viii LIST OF TABLES

List of Figures

2.1 The camera model. 3

2.2 Pincushion-distorted (κ1 = −0.37) (left), undistorted (middle)
and barrel-distorted image (κ1 = 0.73) (right). 6

2.3 Epipolar geometry. [4] . 6

2.4 Epipolar constraint for image point p. [4] 7

2.5 Rectification of a stereo pair. [17] 8

2.6 (a) A stereo pair. (b) The pair rectified. [17] 8

2.7 OpenGL processing pipeline. [15] 9

2.8 The Perspective Viewing Volume Specified by gluPerspective().
[16] . 11

2.9 Two different views of a smiley face texture projected onto the
scene. [3] . 12

2.10 Mipmaps of an image with a resolution of 512×512 to 8×8. . . . 13

2.11 a) Image with 20% noise, b) 3× 3 median filtered image, c) 9× 9

mean filtered image. 14

2.12 Median filter with size 3×3 in use. left: input image with repeat-
ing edge values; center: moving filter window with corresponding
sorted arrays; right: resulting median filtered image. 15

4.1 Visualization of a GeoCast stream, which holds a dynamic camera
view of a 3D model. From left to right: 3D model and camera.
A view without background clipping. A view using Z-based clip-
ping. [21] . 22

ix

x LIST OF FIGURES

5.1 Refinement of the depth maps from coarse (top left) to fine (bot-
tom right) by using differently strong filtered images. 26

5.2 Viewing frustum with visualized near clipping plane (left) and far
clipping plane (right). 27

5.3 Calculation of the texture coordinates for storing them in a texture
(enlarged view of some cutouts, showing just RGB channels). . . 28

5.4 Left: original camera frustums; right: restricted camera frustums
with adjusted near clipping planes. 29

5.5 Mean filtering steps of an image with different kernel sizes. The
red pixels at the kernel label the positions of the texture lookups
for calculating the correct mean value for the pixel marked with
an X . 30

5.6 Depth maps of level 5, 3 & 0 of the “Still life” scene, without (top
row) and with median filtering (bottom row) 32

6.1 Left image, ground truth, depth map and error map of the
“Tsukuba” scene. 38

6.2 Left image, ground truth, depth map and error map of the “Venus”
scene. 38

6.3 Left image, ground truth, depth map and error map of the “Teddy”
scene. 39

6.4 Left image, ground truth, depth map and error map of the “Cones”
scene. 39

6.5 Left and right image of the rendered “Still Life” scene. 42

6.6 Scaled calculated depth map (left), ground truth (center) and the
differences scaled by a factor of 10 (left). 43

6.7 Left: reference left image. Right: reconstructed right depth map
viewed from the left camera. 44

6.8 Cutouts of the enlarged left view of the original (left) and of the
noisy image (right). 44

6.9 Calculated depth map of the normal (left), calculated depth map
of the noisy version (center) and the differences scaled by a factor
of 20 (right). 44

LIST OF FIGURES xi

6.10 Top left: live view; top right: depth map; bottom: reconstructed
scene. The distortions at depth discontinuities are due to the elon-
gated mesh triangles. 45

xii LIST OF FIGURES

Chapter 1

Introduction

The most important sense for us humans are the eyes, a very capable stereo vision
system. With their help we are able to distinguish between different depths and
perceive the world in three dimensions. If we take a photo and take a look at it,
everything thereon is just flat: we have lost the depth dimension. Hence, we need
at least two images which were taken from two slightly different views, like it
happens with our eyes. With such an image set, computer vision people are able
to reconstruct depth information, and this is done via so called stereo matching.

As the name implies, stereo matching algorithms try to find correspondences
in a pair of images and calculate the displacement between them. With these
distance values and the help of the camera parameters, it is possible to calculate
the real depth values of the objects in the images and reconstruct the scene. But the
main and most difficult problem is however finding the correct correspondencies,
and that should be done as fast as possible if the algorithm is used for real-time
applications.

A number of techniques have been introduced to conquer those problems, but
most of them need high-end computer systems to achieve the desired speed. In the
last few years, some researchers found another solution for speeding up computer
vision tasks: They use graphics cards, which are actually designed for accelerating
3D computer games. Since modern graphics chips are programmable, they can
easily be used for implementing new stereo matching algorithms or improving
existing ones.

1

2 CHAPTER 1. INTRODUCTION

This thesis presents a stereo matching algorithm which runs completely on
graphics hardware. Chapter 2 gives an introduction and some background infor-
mation on stereo vision and to OpenGL, the graphics API which is used for imple-
menting the algorithm. In chapter 3, an overview of stereo matching algorithms
in general and some thesis-related approaches are presented. The calibration of
a camera system and the storage of camera information are described in chapter
4. The actual stereo matching algorithm is presented in chapter 5, the matching
results of some stereo pairs are subsequently analyzed in chapter 6.

Chapter 2

Background

2.1 The Camera Model

Our camera model is an abstraction of a real camera, but it is sufficient for de-
scribing and calculating the steps of capturing an image. In this section, we will
regard only the parameters which are actually used in the rest of this thesis. A
more complete description can be found in [4] and [8].

Figure 2.1: The camera model.

3

4 CHAPTER 2. BACKGROUND

As you can see in figure 2.1, the model consists of the optical center O, the
optical axis and the image plane Π. The first two define the camera coordinate

system with C as origin and the optical axis as Z-axis, where the camera is ori-
ented. Π lies in the XY-plane and intersects the optical axis at the center of the

plane c. The distance between O and c is known as the focal length f . The per-
spective projection of a point P (X, Y, Z) on the image plane gives the image point
p(x, y, z). It can be calculated with

x = f
X

Z

y = f
Y

Z

z = f

(2.1)

The point with world coordinates (XW , YW , ZW) is transformed into the point
with camera coordinates (XC , YC , ZC) by a translation T and rotation R. These
operations depend on the location and orientation of the camera.

XC

YC

ZC

1

 =

R1 R2 R3 T1

R4 R5 R6 T2

R7 R8 R9 T3

0 0 0 1

XW

YW

ZW

1

 (2.2)

Since an image consists of pixels and its origin lies in the top left corner, two
additional transformations of the image coordinates are needed. The first one is
the division by the size of a pixel in X- and Y-direction, pxx and pxy, to convert
from camera system units to pixel. This can be combined with the multiplication
with f to get the factors fx and fy. After that, the pixels have to be shifted by
cx and cy, the center of the image in pixel, to change the image origin to get the
coordinates u and v.

u =
x

pxx

+ cx

v =
x

pxy

+ cy

(2.3)

2.2. RADIAL LENS DISTORTION 5

These operations can be summarized with:

u′

v′

w′

 =

fx 0 cx 0

0 fy cy 0

0 0 1 0

R1 R2 R3 T1

R4 R5 R6 T2

R7 R8 R9 T3

0 0 0 1

XW

YW

ZW

1

u

v

1

 =
1

w′

u′

v′

w′

(2.4)

fx, fy, cx and cy are called intrinsic parameters because they describe the
properties inside the camera, whereas the rotation and translation parameters Ri

and Ti are known as extrinsic parameters.

2.2 Radial Lens Distortion

Additional to the basic camera model, we have to consider the radial lens distor-
tion, which occurs in common cameras due to the optical system: the barrel and
the pincushion distortion. In figure 2.2 you can see that the deformation becomes
stronger with increasing distance to the image center. For describing the distortion
exactly in a mathematical equation, one would have to use an infinite number of
distortion coefficients, but it is sufficient to use the first two of them, κ1 and κ2,
for a good approximation. Equation 2.5 shows the general formula, with (x, y)

being distortion-free and (x′, y′) being distorted normalized image coordinates.
Normalized means that the coordinates are relative to the image center, so they
range from -1 to 1 on x- and y-direction.

r =
√

x2 + y2

x′ = x(1 + κ1r
2 + κ2r

4 + κ3r
6 + ...)

y′ = y(1 + κ1r
2 + κ2r

4 + κ3r
6 + ...)

(2.5)

6 CHAPTER 2. BACKGROUND

Figure 2.2: Pincushion-distorted (κ1 = −0.37) (left), undistorted (middle) and
barrel-distorted image (κ1 = 0.73) (right).

2.3 Epipolar Stereo Geometry

2.3.1 General Setup

With the epipolar stereo geometry, you can describe the relation between two
camera models and their points on the image planes. Figure 2.3 [4] shows how
the optical centers O and O′ of the two cameras, which define the base line, and
the world point P span a triangle which belongs to the epipolar plane. The inter-
section lines l and l′ between this plane and the image planes are called epipolar

lines. On these lines, there are epipoles e and e′ which are the projections of one
camera into the image plane of the other, and the projected image points p and
p′ of the P . The epipolar lines can also be regarded as the projection of those

Figure 2.3: Epipolar geometry. [4]

2.3. EPIPOLAR STEREO GEOMETRY 7

lines which are defined by the optical center, image point and world point of one
camera. This leads to the epipolar constraint, which limits the searching area for
stereo matching to epipolar lines: given an image point p, the world point P can
only lie on the “image ray”, which goes through optical center O and this point p,
and that is exactly the epipolar line of the second image, which is defined by the
projection of O and p. Figure 2.4 [4] shows how the projection of world points
P, P1, P2 result in the single image point p to the left and in the image points
p′, p′1, p

′
2 to the right.

Figure 2.4: Epipolar constraint for image point p. [4]

2.3.2 Parallel Setup

In the special case where the image planes are aligned parallel to the base line,
the epipoles lie at infinity. This means that all epipolar lines of one image are
parallel. If these lines are additionally parallel to horizontal axis of the images,
searching for corresponding point is just done along the scanline in x-direction,
which makes the matching process much simpler.

2.3.3 Image Rectification

The search along the scanlines is also possible for the general setup, if the images
are first transformed to have parallel, horizontal epipolar lines. This is done by
projecting the images on a parallel image plane to get a parallel setup as described

8 CHAPTER 2. BACKGROUND

in 2.3.2. In figure 2.5 [17] one can see the epipolar lines of the original image
plane and the transformed, horizontal epipolar lines of the parallel planes. Figure
2.6 [17] visualizes an example of the actual image rectification.

Figure 2.5: Rectification of a stereo pair. [17]

Figure 2.6: (a) A stereo pair. (b) The pair rectified. [17]

2.4. OPENGL API 9

2.4 OpenGL API

OpenGL is a widely used graphics Application Programming Interface (API),
which is platform and programming language independent. It can be used for
all kinds of 2D and 3D graphics applications with a high performance require-
ment, such as computer games, CAD, virtual and augmented reality and real-time
simulations and visualizations. Depending on implementation and the available
hardware, OpenGL commands are executed by the CPU (“software-rendering”) or
by the graphics hardware (“hardware-rendering”). Because of the newest graph-
ics cards and their fast GPUs (Graphics Processing Units), hardware-rendering
usually is much faster than the software version.

2.4.1 Processing Pipeline

Figure 2.7: OpenGL processing pipeline. [15]

Figure 2.7 shows a basic diagram of the OpenGL pipeline stages [15]. The
commands, which specify geometric objects or change the properties of the stages,
enter the pipeline from the left. Most of them can be accumulated in Display
Lists, which can store and resend them with a higher performance.

The first stage, the Evaluator, takes commands for creating basic curves and
surfaces using control points.

The next stage, Per-Vertex Operations & Primitive Assembly, changes the

10 CHAPTER 2. BACKGROUND

attributes of every vertex, like position, color, texture coordinates and normals,
and defines the connectivity of the vertices to form primitives, as lines, triangles,
quads or polygons. The main part of this stage is the transformation from model
space via eye space to screen space. Furthermore, all clipping operations and
back-face culling are also performed.

In the Rasterization stage, lines and triangles are transformed to “fragments”,
which are 2D pixels in the framebuffer. For every fragment, its attributes like
position and color can be defined by interpolation of the attributes of the respective
vertices. The texture mapping process, which takes the color information from the
Texture Memory, is also done here.

The following Per-Fragment Operations are a series of modifications, like
blending, and conditional tests, which can also reject the fragment from being
finally stored in the Framebuffer. The framebuffer contains the color and depth-
information of all its fragments.

With the Pixel Operations, you can store images into texture memory, write
some color values directly in the framebuffer or read them out, or bind the frame-
buffer as a new texture.

2.4.2 Vertex and Fragment Shader

The per-vertex and per-fragment operations are basically done as fixed-function
methods, i.e. you cannot influence the internal calculations directly. In order
to have more possibilities, the OpenGL developers made them more and more
programmable with the introduction and enhancements of so called shaders and
the OpenGL Shading Language (GLSL) [7] in OpenGL 2.0. Shaders are small
programs written in GLSL, a high-level, C-like language, and they are executed
directly on graphics hardware. They give direct access to the properties of ev-
ery vertex and every fragment for reading and writing, and you can pass external
variables from the main program. With the many built-in functions and variables,
conditional statements and loops, complex calculations are possible, which per-
mits realistic renderings in real-time.

2.4. OPENGL API 11

2.4.3 Coordinate Systems

As mentioned in section 2.4.1, the main part of the per-vertex operations is the
transformation from model space to screen space. This is done by multiplying
the coordinates of the vertices by several 4 × 4 matrices, which mainly perform
translations, rotations and scalings.

The model space is the coordinate system where 3D-objects are created, i.e.
every object has its own system, which is independent from the others. In order
to arrange all objects in a common coordinate system, the world space, you have
to translate, rotate and scale them. In addition, you have to place the camera in
here and aim at the objects you want capture. So starting with the coordinates
in model space, all these transformations are done with the modelview matrix
which transforms all vertices into the view of the camera, the eye space.

Furthermore, the properties of the camera have to be set, like aspect ratio,
viewing angle and near and far clipping plane. These parameters define the view-
ing frustum, where just those objects which will be rendered are located (see
figure 2.8 [16]). The frustum has coordinates just between -1 and 1 in every di-
rection, so they have to be transformed from eye space to clipping space via the
projection matrix.

Finally, you have to define the position on the screen, the viewport, where the
scene has to be drawn. The viewport transformation maps all coordinates to
screen space.

Figure 2.8: The Perspective Viewing Volume Specified by gluPerspective(). [16]

12 CHAPTER 2. BACKGROUND

2.4.4 Projective Texture Mapping

Texture Mapping is a technique which was invented in 1974 by Ed Catmull [2].
It is used to apply a precomputed image, a so called texture, to a surface and to
change its properties, e.g. color, transparency, specularity or normal. Just like the
unit of an image (or picture) is a pixel, the unit of a texture is a texel.

To apply texture mapping in OpenGL, you have to first define the texture co-
ordinates for every vertex of the surface and second the texture which shall be
mapped on. The texture coordinates range from [0, 0], the bottom left corner, to
[1, 1], the top right corner of the texture. During the rasterization process, these
coordinates are interpolated and every fragment of the surface gets the correct
color value of the texture. Texture mapping can also be done with more than one
texture, called Multi-texturing.

Figure 2.9: Two different views of a smiley face texture projected onto the scene.
[3]

Projective Texture Mapping can be seen as using a overhead projector: a
texture is projected on the desired object, as you can see in figure 2.9 [3]. This is
done by using homogeneous 4D texture coordinates instead of 2D ones. You get
them by transforming every vertex of the object into texture space: one multiplies
the vertices first with the modelview matrix, and then with the projection matrix
of the projector. Additionally, you have to shift the xyz-coordinates from [−1, 1],
which you get as result, into [0, 1], which are needed for the texture lookup. These
matrix multiplications can easily and efficiently be done in a vertex shader, the
result is stored as a vertex attribute. The correct texture color for every fragment

2.4. OPENGL API 13

is obtained by using the texture2DProj()-function of GLSL with the interpo-
lated texture coordinates.

2.4.5 Mipmaps

Mipmaps can be seen as texture pyramids with different levels of detail (see figure
2.10). They are usually used if a texture should be rendered in a smaller resolution
than the original one, to avoid disturbing rasterization effects. Starting with the
base texture, which is the original one with the most details, the next levels are
derived by filtering. This is done by calculating the mean of 4 texels of one level
for 1 texel of the next one. Thus, the width and height of one texture is divided by
2 in every step of mipmap creation. Mipmaps can be created automatically and
quickly by the graphics hardware.

Figure 2.10: Mipmaps of an image with a resolution of 512×512 to 8×8.

2.4.6 Framebuffer Objects

When rendering a scene, the result is stored in the framebuffer, as described be-
fore. But if you want to use the result as a texture for further processing, you
would have to read out the framebuffer first and create a texture with its data.
Because these steps are very slow, you can bypass them by using a framebuffer

14 CHAPTER 2. BACKGROUND

object (FBO). If you bind a texture to a FBO and select this FBO as new render tar-
get, the rendering is done directly to this texture without any detours. FBOs were
originally an OpenGL extension, but are now part of the OpenGL 2.0 standard.

2.4.7 Image Processing

With the use of textures, many image processing tasks can also be implemented
on the GPU. For this purpose, a quad with a texture has to be rendered to a view-
port which has the size of the input image. This is achieved by rendering a quad
with vertex coordinates (−1,−1, 0), (1,−1, 0), (1, 1, 0), (−1, 1, 0) and texture
coordinates (0, 0), (1, 0), (1, 1), (0, 1) respectively, and setting the identity ma-
trix as modelview and projection matrix. If the quad would be rendered now, the
output would correspond to the input image. With the help of a fragment shader,
you can easily access the texture, since you have the interpolated texture coordi-
nates, and do some calculations with the color information (e.g. thresholding).
Since you can do several texture lookups in one shader, either on several textures
and/or with different texture coordinates, effects like blending, subtraction, color
conversion, convolution or other filters can easily be developed.

Example: Median Filter

As an example we show how a median filter is implemented in a fragment shader.
A median filter sorts an array of values surrounding a sample into numerical or-
der and uses the center of the sorted array, the median value, as the output (see
figure 2.12). The advantages of the median filter is an efficient reduction of high-
frequency noise and an edge-preserving filtering property, which e.g. mean filter-

Figure 2.11: a) Image with 20% noise, b) 3 × 3 median filtered image, c) 9 × 9
mean filtered image.

2.4. OPENGL API 15

ing doesn’t have. In figure 2.11, you can see these advantages: The median filter
reduces efficiently the amount of noise and keeps the edges, whereas the mean
filter only blurs noise and edges.

Our implementation is designed for median filtering the alpha channel and
uses a 3 × 3 window for filtering. First, the local texel values are stored in an
array. After that we use a Bubble sort [9] to put the array into numerical order.
Since we are interested in the median value, it is sufficient to perform only 5
iterations of the algorithm for getting a sorted upper part of the array. The median
value is finally stored as new alpha value (see listing A.6).

Figure 2.12: Median filter with size 3×3 in use. left: input image with repeating
edge values; center: moving filter window with corresponding sorted arrays; right:
resulting median filtered image.

16 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

Stereo matching is a popular problem, and many papers and articles propose dif-
ferent methods for finding a solution. Most of them are pure CPU-based imple-
mentations, simply because the first programmable graphics chips came up only
in the last few years and they were hard to program. So most of the newer GPU-
based algorithms are based on the ideas of the old ones, but they were rewritten in
such a way they can optimally run on graphics hardware by using new techniques.
In this chapter, we present an overview of stereo matching algorithms, and some
hierarchical and GPU-based ones relevant to out work.

3.1 Overview

In order to get an overview of the different existing algorithms, Scharstein and
Szeliski compared and classified them in [13]. Their taxonomy is based on four
steps, which are performed by stereo algorithms in general:

• matching cost computation

• cost (support) aggregation

• disparity computation / optimization

• disparity refinement

17

18 CHAPTER 3. RELATED WORK

The matching cost computation is done to measure the equality of two pix-
els. The most common methods are sum of squared differences (SSD), sum of

absolute differences (SAD), mean squared error (MSE) and mean absolute differ-

ences (MAD). All these methods use also the surrounding neighbourhood of the
regarded pixels to estimate the similarity. The differences are calculated for every
color channel of the image and summed up afterwards. Equations 3.1, 3.2, 3.3
and 3.4 define the respective methods for image blocks I, I ′ of size M × N :

SSD(I, I ′) =
N−1∑
n=0

M−1∑
m=0

(I(n, m) − I ′(n, m))2 (3.1)

SAD(I, I ′) =
N−1∑
n=0

M−1∑
m=0

|I(n, m) − I ′(n, m)| (3.2)

MSE(I, I ′) =
1

M · N

N−1∑
n=0

M−1∑
m=0

(I(n, m) − I ′(n, m))2 (3.3)

MAD(I, I ′) =
1

M · N

N−1∑
n=0

M−1∑
m=0

|I(n, m) − I ′(n, m)| (3.4)

After that, the aggregation of cost use these values to calculate the cost of a
support region by summing up or averaging. This can be implemented by using
e.g. square windows, Gaussian convolution, shiftable windows or adaptive-sized
windows.

The disparity computation and optimization methods evaluate the com-
puted costs in order to find the correct disparities for the single pixels. Local

Methods use the winner-take-all (WTA) strategy, where for every pixel the dis-
parity with the best cost value are chosen. Global methods try to find a disparity
function that minimizes a global energy, which can be done by simulated anneal-
ing, max-flow or graph-cut methods, for example. Methods based on dynamic

programming searching a minimum-cost path for every scanlines to get the dis-
parity values. The last group of methods are the cooperative algorithms, which
use linear and non-linear operations together for finding the correct disparities.

At the refinement of disparities, the computated disparities can be addition-
ally refined to get sub-pixel values, i.e. to get smoother transitions at regions
which correspond to the same surface.

3.2. HIERARCHICAL AND GPU BASED ALGORITHMS 19

3.2 Hierarchical and GPU based algorithms

In [10], Koschan, Rodehorst and Spiller present a hierarchical block matching
algorithm using image pyramids. They compute the disparities of one level by
using the disparities of the preceding level as initial disparities and reducing the
search space. This method gives better results than the general block matching
algorithm.

Roy and Drouin describe in [12] a non-uniform hierarchical scheme for stereo
matching. By increasing the resolution of the disparity map just in areas where a
higher resolution is needed, their algorithm simultaneously uses different coarse-
ness levels to improve the final result. Especially regions with large depth discon-
tinuities are handled very well with it.

In [20], Zach et al. use hierarchical image warping on graphics hardware to
find the depth map of two given images. Their algorithm compares the warped
image of one camera view with the image of the other one and uses the best
matching depth values for the next level with higher resolution.

Wang et al. present in [18] a dynamic programming based stereo matching al-
gorithm, which can use the GPU either for the entire algorithm or just for speeding
up the CPU version.

In [19] Yang and Pollefeys describe a correlation-based stereo algorithm on
graphics hardware which uses features like adaptive windows and cross checking.
Their matching cost aggregation is done by calculating mip-maps of the difference
map for every disparity value. With up to 289 million disparity evaluations per
second it is one of the fastest matching algorithms.

20 CHAPTER 3. RELATED WORK

Chapter 4

Camera Calibration

The camera calibration is an important and well-understood part of stereo vision.
The camera information is used as preprocessing step to rectify the images (see
chapter 2.3.3) or directly in the matching algorithm as in our case. With the cal-
ibration, one yields the intrinsic and extrinsic parameters (see section 2.1) for
every single camera. Regarding the extrinsic parameters, in most cases it is suffi-
cient to know the relative position and rotation of the cameras to each other. There
are many algorithms and programs which can be used for getting the needed pa-
rameters, which has then to be converted and stored in a way that they can be
easily used in graphics APIs like OpenGL or Direct3D.

4.1 Matlab Camera Calibration Toolbox

For camera calibration, there are plenty of different algorithms and programs
which find the wanted parameters in various ways. The “Matlab Camera Cal-

ibration Toolbox” [1] is one of them. Running in Matlab, it provides a GUI for
several functions which can be used to calibrate a camera system with captured
images of a calibration object, e.g. a black&white-checkerboard. The 3 × 3 rota-
tion matrix and the 3-dimensional translation vector comprise the extrinsic param-
eters. The obtainable intrinsic parameters are focal length, principal point, skew
coefficient and the radial and tangential image distortion coefficients. However,
it is also possible to exclude some parameters which don’t need to be estimated.

21

22 CHAPTER 4. CAMERA CALIBRATION

This can increase the accuracy of the other ones. For our purposes it is sufficient
to estimate just the focal length and the first two radial distortion coefficients. Be-
sides the parameters, the uncertainties are also displayed to rate the performed
calibration.

4.2 GeoCast

GeoCast [21] is a storage format for camera parameters which can be used to
place virtual cameras or projectors in a common world space. It contains the in-
trinsic and extrinsic parameters for every single camera and can be used together
with multi-view RGBZ video to recreate a captured scene (figure 4.1). In a dy-
namic camera setup, the information can be stored for every frame of the image
sequence.

The coordinate system of the data representation is based on the OpenGL spec-
ification, since it is well-defined and because the provided data can be directly
used in OpenGL-based applications without conversion. Therefore GeoCast files
contain the projection and modelview matrices, or parameters to create them eas-
ily. Hence, it is possible to describe every camera type, rotation and translation as
4 × 4 matrices. In the case of perspective and orthogonal camera views, it suffice
to use only the needed parameters like near/far clipping plane and field-of-view &
aspect ratio and width & height respectively, instead of the projection matrix.

Figure 4.1: Visualization of a GeoCast stream, which holds a dynamic camera
view of a 3D model. From left to right: 3D model and camera. A view without
background clipping. A view using Z-based clipping. [21]

4.3. CONVERTING CAMERA PARAMETERS TO GEOCAST 23

4.3 Converting camera parameters to GeoCast

As the image formation pipelines of computer vision (described in section 2.1)
and computer graphics (described in section 2.4.3) differ in many points, a con-
version from one domain to the other is necessary. In [11], Ming Li analyzes the
two pipelines and describes how to convert camera parameters in computer vision
notation in OpenGL graphics concepts.

Since some parameters that we get from the calibration toolbox are different
or not estimated we can simplify the conversion a little bit. As mentioned before,
for describing a camera, GeoCast needs the modelview and projection matrices.
The modelview matrix the inverted 4 × 4 matrix which is created from the 3 × 3
rotation matrix and the translation vector. A multiplication of T2 and T3 with −1

is needed to flip the y- and the z-axis, since the Computer Vision and the OpenGL
coordinate system are different.

MatrixModelview =

R1 R2 R3 T1

R4 R5 R6 −T2

R7 R8 R9 −T3

0 0 0 1

−1

(4.1)

Since real world cameras are perspective ones, the projection matrix can be
created by the OpenGL gluPerspective function with the following arguments:
field-of-view along y-axis, aspect ratio of the image and distance to the near and
far clipping plane. The field-of-view is calculated from the focal length f and the
image height.

Fovy = 2 · atan(
height

2
· f) · 180

Π
(4.2)

The near and far clipping plane do not exist in the computer vision camera
model and should be chosen reasonably to set the viewing limits of the camera.

24 CHAPTER 4. CAMERA CALIBRATION

4.4 Lens distortion parameters in GeoCast

Since lens distortion has yet only been just suggested for GeoCast in [21], we now
extend the format with this feature. As described in 2.2, radial lens distortion can
be described with two radial distortion coefficients κ1 and κ2 and the image center
coordinates cX and cY to convert between normalized and not-normalized image
coordinates. Given these parameters, we can determine the distorted coordinates
by applying the radial distortion function 2.5 to the undistorted coordinates.

The calibration toolbox calculates the image center in pixel units. Furthermore
the image coordinates have to be divided by the focal length before using the radial
distortion function. In order to have parameters, which are independent from the
image width and height and just depend on the aspect ratio, we have to divide the
y-coordinate of the image center and the focal length by the image height and the
x-coordinate by the image width.

These five parameters can now be used for describing the radial lens distortion
of the camera. In a GeoCast file, they are written as

ImageWarp k1 [KAPPA1] k2 [KAPPA2] centerX [CENTERX]

centerY [CENTERY] focal [FOCAL]

The fragment shader which uses these parameters for undistorting can be
found in section A.3.

Chapter 5

The Stereo Matching Algorithm

This chapter’s stereo matching algorithm calculates a depth map of an image (or
a single frame of a video sequence) by using a hierarchical ray-traversing method
running on graphics hardware. Because of the epipolar constraint (see section
2.3.1) it is possible to find corresponding image points by traversing along im-

age rays of the reference image. For every sampling point of a traversed ray, the
intersecting image ray of the other camera is computed. By comparing the differ-
ences of the colors, the sample point with the best match is used for calculating
the depth. Starting with just a few image rays and low-pass filtered versions of
the input images, a depth map with low resolution is calculated and is used for
the computation of improved depth maps by using more rays and images which
are less filtered (see figure 5.1). With this hierarchical approach it is possible to
calculate high-quality depth maps in real-time.

5.1 Image Ray Color Values

In order to get the correct image rays, we need two calibrated cameras, i.e. their
intrinsic and extrinsic parameters have to be known and they have to be usable
with OpenGL. For this purpose, we use the GeoCast format (see 4.2) to create the
modelview and projection matrix for every camera. We call the reference camera
C1, the other one C2. The other information like image width and height and the
lens distortion parameters are used in the image pre-processing steps.

25

26 CHAPTER 5. THE STEREO MATCHING ALGORITHM

Figure 5.1: Refinement of the depth maps from coarse (top left) to fine (bottom
right) by using differently strong filtered images.

5.2. PROJECTIVE TEXTURING PRECOMPUTATION 27

The viewing frustum of C1 defines the search space for the ray traversal, so
all sampling points are located there. Hence, the depth values can range from -1
(near clipping plane) to 1 (far clipping plane) (see figure 5.2). The color of the
intersecting ray of a sampling point can be retrieved by using projective texture
mapping on that point: the point’s coordinates, which are in camera space, have
to be multiplied with the inverse of the projection and the modelview matrix of C1

to get the coordinates in world space. The projective texture mapping for camera
C2 is done afterwards as described in section 2.4.4.

Figure 5.2: Viewing frustum with visualized near clipping plane (left) and far
clipping plane (right).

5.2 Projective Texturing Precomputation

Since we have a lot of sampling points, calculating the projective texture coordi-
nates would lead to a huge number of matrix multiplications (e.g. imageWidth×
imageHeight × searchRange for the last depth map). To reduce these calcula-
tions, it is also possible to interpolate texture coordinates for all sampling points
which have the same depth. So we can calculate the texture coordinates of a rect-
angle which has corner coordinates (−1,−1, z), (1,−1, z), (1, 1, z), (−1, 1, z) for
every sampling depth z, and store them in a texture to look them up when needed.
The correct texture coordinate for a single fragment is then interpolated between
the four precomputed ones. For storing the texture coordinates we use an RGBA
texture with size (numZ ∗ 2)× 2, with numZ as number of traversal steps, so we

28 CHAPTER 5. THE STEREO MATCHING ALGORITHM

have numZ blocks of size 2 × 2. In every block we can store the 4 texture coor-
dinates of one depth level by writing the xyzw-values to the RGBA channels (see
figure 5.3). The calculations of the projective texture coordinates are basically
done as described before. The only difference is the more complex calculation of
the rectangle coordinates which are specified by the interpolated texture coordi-
nates and thus by the fragment position (see listing A.2).

Figure 5.3: Calculation of the texture coordinates for storing them in a texture
(enlarged view of some cutouts, showing just RGB channels).

5.3 Restricting Search Space

As described in 5.1, the search space is defined by the viewing frustum of the
reference camera. In order to increase the depth resolution and improve stereo
matching, we can adjust the near and far clipping planes to the range, where both
viewing frustums intersect, before we precalculate the texture coordinates. This
is done by projecting a black texture from one camera on a white rectangle which
moves in the viewing frustum of the other camera, similar as described in the
previous section. If we readout the framebuffer after every step and look for black
pixels, we can determine the start and end depth where both frustums intersect.
The smaller the step size and the larger the framebuffer, the higher the accuracy,
but the longer the running time, too. However for our purposes it is sufficient to

5.4. PREPROCESSING OF INPUT DATA 29

use 200 search steps and a framebuffer of 5 × 5 pixels. After doing this for both
cameras respectively, we update the projection matrices with the new near and far
clipping plane.

Figure 5.4: Left: original camera frustums; right: restricted camera frustums with
adjusted near clipping planes.

5.4 Preprocessing of Input Data

The two input textures which we use for the algorithm originate from the images
of two cameras. In order to used them for stereo matching, we first have to perform
a Radial Lens Undistortion with the help of the intrinsic parameters. This is
done by rendering a screen-sized rectangle with the undistortion shader (see listing
A.3) to another texture. While rendering, the shader calculates the correct texture
coordinates using the radial distortion equation 2.5 (see chapter 2.2).

Now, the undistorted images can be used in the next step, Mean Filtering. As
mentioned before, the stereo matcher uses several mean-filtered versions of the
input images. All these images build an image stack with the original image as
base, followed by the image versions with increasing size of the filter kernel.

Even though mipmaps are not used, the mean-filtering can still be recursively
done on graphics hardware by using already mean-filtered images to filter even
more. By adjusting the sampling positions, already calculated color values can be
used again for the next level. For our purposes we use kernels of size 2n × 2n,
hence we need just one rendering pass with four texture lookups for every filtering

30 CHAPTER 5. THE STEREO MATCHING ALGORITHM

Figure 5.5: Mean filtering steps of an image with different kernel sizes. The red
pixels at the kernel label the positions of the texture lookups for calculating the
correct mean value for the pixel marked with an X

5.5. STEREO MATCHING 31

level. Figure 5.5 illustrates these filtering steps.The code of the shader can be
found in A.4.

Since all of the stack images have the same resolution, we can use small steps
for the traversing of the image rays. Thus the first depth maps are already very
well estimated and very smooth. This would not be possible with the use of image
pyramids or mipmaps (see 2.4.5), where the resolution is halved in every level: in
order to get the correct color values, the rays can just be traversed with large steps
depending on the filtering level.

5.5 Stereo Matching

The image stack can now be used for stereo matching. As said before, we calculate
at first low-resolution depth maps with the help of strongly filtered input and im-
prove them by using higher resolutions and less-filtered images, so we go through
the image stack from top to bottom. The size of the stack depends on the reso-
lution of the input images (higher resoluted images need more convolutions than
lower ones) and should be chosen such that the smallest resolution of the depth
maps is larger than 16 × 16 in order to get good results. Consequently, the depth
maps have resolutions of imageWidth

2convolutions × imageHeight
2convolutions to imageWidth

20 × imageHeight
20 . The

initial depth is set to the half of the maximum search range. This search range has
to be defined by the user (e.g. a quarter of the image).

5.5.1 Matching Cost Calculation

In every step, we lookup the reference image ray’s color and compare it with
the colors of intersecting rays from the other image. Instead of traversing all
intersecting rays, we use the computed depth of the previous step as starting depth
and the search range of the current level, which is halved after every step to restrict
the search space. The traversal starts with initial depth and continuous alternating
in both directions with a step size of 1. For every depth value, we lookup the
precomputed texture coordinates (see section 5.2) for getting the intersecting ray’s
color. Then, we determine the matching value by calculating the SSD (equation
3.1) of the two colors and store the depth value if the error is smaller than an

32 CHAPTER 5. THE STEREO MATCHING ALGORITHM

already found one. At the end, the shader stores the depth for the best match
in the alpha channel. By using several samples of the direct neigbourhood for
calculating the matching value, the comparison of the colors is more precise than
using just one sample.

5.5.2 Depth Map Postprocessing

After having computed the depth values of the current level, we use a median filter
(see section 2.4.7) to eliminate some outliers. Since this is done in every step, we
reduce the chance that intermediate false matches influence the final result. The
improvement of the depth map by using this additional step can be seen in figure
5.6.

Figure 5.6: Depth maps of level 5, 3 & 0 of the “Still life” scene, without (top
row) and with median filtering (bottom row) .

5.6 Scene Reconstruction

Finally, the reference scene can be visualized for the user. To achieve that, we
use a triangle mesh and displace it with the depth values. The world coordinates
of the mesh are calculated in a vertex shader by looking up the depth values and

5.7. DISPARITY MAPS 33

projecting the vertices out of the reference camera view. This is similar to cal-
culating the coordinates of the sample points as described before in section 5.1.
The color of the vertices is then usually defined by the reference image. If the
algorithm was correct, there is no difference between the reconstructed scene of
one camera viewed by the other one and the input image of that camera (see figure
6.7 in the next chapter as example). It is also possible to store both, input image
and depth map, as RGBZ image for reusing it together together with a GeoCast
file as described in section 4.2.

5.7 Disparity Maps

Additional to retrieving depth maps using the ray based method, we can also cal-
culate the disparities between two rectified images by searching for correspon-
dences along scanlines, just like most other stereo matching algorithms. This
gives the possibility to match rectified stereo images without corresponding cam-
era information.

The difference of these two variants is the texture coordinate calculation for
the second texture. In the ray based method, the coordinates are calculated using
projective texturing and the current depth, whereas the scanline method uses the
given disparity to calculate an offset to the reference image’s texture coordinate.
The omission of the perspective texture handling speeds up the algorithm, which
is of course an advantage, but the input images have to be rectified, as mentioned
before. If this is not the case, then extra computation time is needed for rectifica-
tion, which again negates the speed advantage. Furthermore, since the disparities
do not indicate the real depth values, you can just make a state about the relative
position of two matched objects. Thus, a proper reconstruction is not possible
without having the information of the cameras.

34 CHAPTER 5. THE STEREO MATCHING ALGORITHM

Chapter 6

Results

To generate the results, we have implemented the proposed method in OpenGL.
It was tested on a AMD Turion 64 X2 Mobile with 1.6GHz and 1024MB RAM,
running Gentoo Linux R5 2.6 and OpenGL 2.0. The graphics card consists of
a NVIDIA GeForce Go 7600 GPU and 256MB RAM. In this section, we will
present some results which show the accuracy and speed of the algorithm. The
time measurements are done by using the GL EXT timer query extension [5] of
OpenGL for GPU timings.

6.1 Middlebury Data Set

In order to determine the error of the calculated depthmap and to compare our al-
gorithm with other ones, we use the data set and evaluation form provided by the
“Middlebury Stereo Vision Page” [14]. The data set consists of the “Tsukuba”,
“Venus”, “Teddy” and “Cones” scene with images of resolution 384 × 288, 434
× 383, 450 × 375 and 450 × 375 and maximum disparities of 15, 19, 59 and
59, respectively. Since comparison is based on disparities, we use the scanline
version of our algorithm. This is possible because the images are already rectified
and can be used for parallel matching. The two main parameters for our algo-
rithm are the number of samples and convolutions, so we use several parameter
combinations for testing the algorithm’s performance. The error is calculated for
the left disparity maps at non-occluded areas with a threshold of 1. This means

35

36 CHAPTER 6. RESULTS

that the difference between the calculated disparities and the ground truth is deter-
mined only at regions which can be seen from both cameras, and every pixel with
a difference larger than 1 is marked as “bad” pixel.

As you can see in table 6.1, the error diminishes if the number of samples
increases. That was to be expected, since a bigger correlation window gives a
more reliable matching score. But the difference between 5 and 9 samples is not
as large as between 5 samples and 1. On average, using 5 convolutions gives the
best result for every number of samples, which corresponds to an initial depth
map of 14 × 11 for an input image of 450 × 375. Figures 6.1, 6.2, 6.3 and
6.4 show the resulting depth maps which were created using 9 samples and 5
convolutions, together with the left input image, the ground truth and error map.
In the error map, bad pixels are colored black, correct matches are white and the
occluded areas are marked with grey. In table 6.2 you can see the rendering times
for estimating the depth maps and the million disparity evaluations per seconds
(Mde/s).

In order to see how the different parameter settings affect the result we take a
closer look at the “Teddy” scene. Table 6.3 and 6.4 shows the depth maps and the
bad pixels of the respective versions. It is clear that the error at regions with large
depth discontinuities increases with the use of more convolution levels and more
samples, whereas the error in homogeneous regions decreases. This is due to the
large support size for finding correspondent matches. The wrong estimated depth
value near edges can not be compensated because of the decreasing search range.

Compared to other stereo algorithms, the calculated depth maps of our algo-
rithm have more bad pixels, especially in homogeneous regions. But the actual
strength of the algorithm lies in much higher calculation speed and the use of
graphics hardware, which frees the CPU for other calculations.

6.1. MIDDLEBURY DATA SET 37

Method Tsukuba Venus Teddy Cones average
1 Sample, 3 Convolutions 12.2 26.5 43.2 39.3 30.3
1 Sample, 4 Convolutions 12.5 22.7 37.0 33.1 26.3
1 Sample, 5 Convolutions 13.4 22.3 34.8 30.9 25.3
1 Sample, 6 Convolutions 16.2 22.7 34.8 32.5 26.5
5 Samples, 3 Convolutions 8.99 21.9 30.1 23.4 21.1
5 Samples, 4 Convolutions 9.40 17.3 26.9 20.9 18.6
5 Samples, 5 Convolutions 9.36 15.6 24.9 19.2 17.2
5 Samples, 6 Convolutions 9.71 16.0 25.8 20.1 17.9
9 Samples, 3 Convolutions 8.70 20.1 27.3 19.8 18.9
9 Samples, 4 Convolutions 8.86 16.0 24.8 18.0 16.9
9 Samples, 5 Convolutions 8.90 15.1 23.0 17.0 16.0
9 Samples, 6 Convolutions 8.96 15.2 24.1 18.4 16.6

Table 6.1: Percentage of ”bad” pixels in non-occluded regions for the Middlebury
data set.

image size: 384 × 288 434 × 383 450 × 375
mean filtering 0.59 ms 0.88 ms 1.00 ms

5 samples stereo matching 1.88 ms 2.83 ms 3.60 ms
5 convolutions total 2.47 ms 3.71 ms 4.60 ms

Mde/s 67 81 143
mean filtering 0.59 ms 0.88 ms 1.00 ms

9 samples stereo matching 3.10 ms 4.87 ms 6.26 ms
5 convolutions total 3.69 ms 5.75 ms 7.26 ms

Mde/s 45 53 90

Table 6.2: Depth map rendering time and Mde/s.

38 CHAPTER 6. RESULTS

Figure 6.1: Left image, ground truth, depth map and error map of the “Tsukuba”
scene.

Figure 6.2: Left image, ground truth, depth map and error map of the “Venus”
scene.

6.1. MIDDLEBURY DATA SET 39

Figure 6.3: Left image, ground truth, depth map and error map of the “Teddy”
scene.

Figure 6.4: Left image, ground truth, depth map and error map of the “Cones”
scene.

40 CHAPTER 6. RESULTS

1 sample 5 samples 9 samples

3 conv.

4 conv.

Table 6.3: Depth maps and errors of the “Teddy” scene (3 & 4 convolutions).

6.1. MIDDLEBURY DATA SET 41

1 sample 5 samples 9 samples

5 conv.

6 conv.

Table 6.4: Depth maps and errors of the “Teddy” scene (5 & 6 convolutions).

42 CHAPTER 6. RESULTS

6.2 Synthetic Data

We also used a synthetic image pair of a rendered scene as test input, in order to
have optimal images without noise and perfectly calibrated cameras (figure 6.5).
The scene was taken from a tutorial of Autodesk’s 3D Studio Max 7. We rendered
it into two camera views with a resolution of 640 × 480 and exported the camera
information as Geocast files. The search range is set to a quarter of the image
width, since the two cameras have a wide baseline, the number of samples is set
to 5 and the number of convolutions to 6.

Figure 6.5: Left and right image of the rendered “Still Life” scene.

The ground truth of the scene which can be seen in figure 6.6 was obtained
by rendering the depth values in addition to the color. The depth map of the
stereo algorithm had to be scaled to get the same depth range as in the ground
truth. Figure 6.6 shows the difference between the two depth maps and one can
see that the depth values are well estimated except for occluded regions which
are not seen by both cameras. The differences around the leaves are due to use
of transparent textures on deformed rectangles to model them, which the ground
truth images store incorrectly. The rendering times for calculating the depth maps
with different settings can be found in 6.5.

Since we have the camera information available, we can reconstruct the scene
on the basis of the calculated depth map. In order to compare the reconstructed
scene with the original, we calculated the depth map of the right camera, recon-
struct the scene by deforming a triangle mesh and look at it from the view of the

6.2. SYNTHETIC DATA 43

Figure 6.6: Scaled calculated depth map (left), ground truth (center) and the dif-
ferences scaled by a factor of 10 (left).

image size: 640 × 480 320 × 240
mean filtering 1.77 ms 0.41 ms

1 sample stereo matching 6.00 ms 1.28 ms
5 convolutions total 7.77 ms 1.69 ms

Mde/s 390 247
mean filtering 1.77 ms 0.41 ms

5 samples stereo matching 27.12 ms 4.80 ms
5 convolutions total 28.89 ms 5.21 ms

Mde/s 105 80
mean filtering 1.77 ms 0.41 ms

9 samples stereo matching 57.57 ms 10.23 ms
5 convolutions total 59.34 ms 10.64 ms

Mde/s 51 39

Table 6.5: Depth map rendering time and Mde/s.

left camera. As you can see in figure 6.7 the reconstructed scene is identical with
the actual scene, thus the depth values are correctly used for the reconstruction.

In an additional experiment, we added some random noise (10% in every color
channel) to simulate perturbations which appear in digital camera images (figure
6.8). The settings for the stereo matcher are the same as for the original images.
As you can see in figure 6.9 the additional noise does not influence the result very
much. Since the first depth maps are estimated with strongly filtered images with
blurred noise, they differ little from the depth maps of the original images.

44 CHAPTER 6. RESULTS

Figure 6.7: Left: reference left image. Right: reconstructed right depth map
viewed from the left camera.

Figure 6.8: Cutouts of the enlarged left view of the original (left) and of the noisy
image (right).

Figure 6.9: Calculated depth map of the normal (left), calculated depth map of the
noisy version (center) and the differences scaled by a factor of 20 (right).

6.3. VIDEO DATA 45

6.3 Video Data

Since our algorithm is fast enough to process video streams, we use a calibrated
stereo camera system to capture data and directly calculate the depth map. As
input device we use a Bumblebee stereo vision camera, produced by Point Grey

Research [6]. The Bumblebee has two synchronized cameras, so we can be sure
that both captured frames depict the scene at exactly the same time. Furthermore,
we calibrated the two single cameras as described in chapter 4 to compute Geo-
Cast files with the camera parameters.

Using images with a resolution of 320 × 240, 6 convolution levels, 5 samples
and a search range of 80, we get a framerate of 25FPS. This includes capturing,
image undistorting, image filtering and stereo matching. In figure 6.10 you can
see an example of a reconstructed captured scene.

Figure 6.10: Top left: live view; top right: depth map; bottom: reconstructed
scene. The distortions at depth discontinuities are due to the elongated mesh tri-
angles.

46 CHAPTER 6. RESULTS

Chapter 7

Conclusion and Future Work

In this thesis we presented a stereo matching algorithm which uses modern
graphics hardware to estimate depth maps in real-time. By using a hierarchical
approach, depth values are calculated with the help of mean-filtered images and
propagated to the next level, where they serve as starting point for the estimation
of the next depth map. This yields a coarse depth estimation which is refined for
every pass with reduced mean-filtering. The matching takes place in the viewing
frustum of the reference camera, so the depth values can directly be used for an
accurate reconstruction of the regarded scene, provided that the cameras are well
calibrated.

The huge amount of matrix multiplications, which would be needed for
calculating the projective coordinates, is reduced by interpolating precomputed
coordinates stored in textures. By using mean-filtered images and the hierarchical
approach we can replace large sampling windows. In contrast to mipmaps,
the correct mean image of the neighborood is calculated at every image point.
Furthermore, the median filtering of every calculated depthmap prevents outliers
from being propagated to the next levels.

In the future, improvements of the depth map calculation could be made by
using Gaussian-filtered images instead of mean-filtered ones for estimating the
intermediate depth maps. Furthermore, false matches at homogeneous regions

47

48 CHAPTER 7. CONCLUSION AND FUTURE WORK

could be reduced by using residual images between stack levels. It would be
also interesting to expand this stereo matching algorithm on a multi-view camera
setup.

Appendix A

Shader Source Codes

A.1 Vertex Shader for positioning the sweeping
rectangle

// matrices defined in application:

// gl_TextureMatrix[2]: projection matrix of first camera

// gl_TextureMatrix[3]: modelview matrix of first camera

// gl_TextureMatrix[4]: projection matrix of second camera

// gl_TextureMatrix[5]: modelview matrix of second camera

// gl_TextureMatrixInverse[6]: inverted projection matrix of reference camera

// gl_TextureMatrixInverse[7]: inverted modelview matrix of reference camera

// attributes from application

uniform float depth; // depth of the plane in the viewing frustum, [-1, 1]

//matrix for transforming coordinates from [-1, 1] to [0, 1]

const mat4 shift = {0.5, 0.0, 0.0, 0.0,

0.0, 0.5, 0.0, 0.0,

0.0, 0.0, 0.5, 0.0,

0.5, 0.5, 0.5, 1.0};

void main()

{

// proect geometry out from the mono view !

// reverse mesh coords from projector space to world space

vec4 position = gl_Vertex; //coordintes of rectangle

position.z = depth; //defining the depth of the rectangle

//projecting out the rectangle:

49

50 APPENDIX A. SHADER SOURCE CODES

vec4 worldpos = gl_TextureMatrixInverse[7]

* (gl_TextureMatrixInverse[6]*position);

//calculating the rendering position:

gl_Position = gl_ModelViewProjectionMatrix * worldpos;

//calculating projective texture coordinates of first and second camera:

gl_TexCoord[1] = shift

* (gl_TextureMatrix[2] * (gl_TextureMatrix[3] * worldpos));

gl_TexCoord[2] = shift

* (gl_TextureMatrix[4] * (gl_TextureMatrix[5] * worldpos));

}

A.2. FRAGMENT SHADER FOR COORDINATES PRECOMPUTATION 51

A.2 Fragment Shader for Coordinates Precomputa-
tion

#version 110

uniform int steps;

uniform int matrixTexSize;

uniform int refCam;

const mat4 shift = {{0.5, 0.0, 0.0, 0.0},

{0.0, 0.5, 0.0, 0.0},

{0.0, 0.0, 0.5, 0.0},

{0.5, 0.5, 0.5, 1.0}};

float round(float x)

{

float f=fract(x);

return (f<0.5)?x-f:x-f+1.0;

}

void main()

{

float stepsf=float(steps);

float size=stepsf*2.0;

float deltaX = dFdx(gl_TexCoord[0].x)/2.0;

float x, y, z;

float xPos=round((gl_TexCoord[0].x-deltaX)*size); // xPos: x-PixelCoordinate

x = ((mod(xPos, 2.0))*0.5+0.25)*4.0-2.0; // -> +/-1 repeated for x

y = gl_TexCoord[0].y*4.0-2.0; // -> +/-1 for y

// z-coordinate depends on current x-position

z = -((floor(xPos/2.0)*2.0/size)*2.0-1.0); // -> [-1, 1] for z

vec4 position = vec4(x,y,z,1);

vec4 worldpos = gl_TextureMatrixInverse[7]

* (gl_TextureMatrixInverse[6]*position);

vec4 texCoord;

if(refCam==0)

texCoord = shift * (gl_TextureMatrix[4] * (gl_TextureMatrix[5] * worldpos));

else

texCoord = shift * (gl_TextureMatrix[2] * (gl_TextureMatrix[3] * worldpos));

gl_FragColor = texCoord;

}

52 APPENDIX A. SHADER SOURCE CODES

A.3 Fragment Shader for Radial Undistorting
uniform sampler2D texture;

uniform float kappa1;

uniform float kappa2;

uniform float centerX;

uniform float centerY;

uniform float focalFactor;

uniform int width;

uniform int height;

void main()

{

float aspect=float(height)/float(width);

float y=(gl_TexCoord[0].y-centerY)*aspect*focalFactor;

float x=(gl_TexCoord[0].x-centerX)*focalFactor;

float r2=dot(vec2(x,y), vec2(x,y));

float L=1.0+kappa1*r2+kappa2*r2*r2;

//calculate the texture coordinates for the distorted image

vec2 texcoord=vec2(x*L/focalFactor+centerX,

(y*L/focalFactor)/aspect+centerY);

gl_FragColor=texture2D(texture, texcoord);

}

A.4. FRAGMENT SHADER FOR MEAN FILTERING 53

A.4 Fragment Shader for Mean Filtering
uniform sampler2D texture;

uniform int level;

void main()

{

float steps = pow(2.0,float(level));

float deltaX = dFdx(gl_TexCoord[0].x)*steps;

float deltaY = dFdy(gl_TexCoord[0].y)*steps;

vec2 texcoords[4];

//shift positions for centered sampling:

texcoords[0]=gl_TexCoord[0].xy+vec2(-deltaX*0.5, -deltaY*0.5);

texcoords[1]=texcoords[0]+vec2(deltaX, 0);

texcoords[2]=texcoords[0]+vec2(0, deltaY);

texcoords[3]=texcoords[0]+vec2(deltaX, deltaY);

vec3 outColor=vec3(0);

for(int i=0; i<4; i++)

outColor+=texture2D(texture, texcoords[i]).rgb;

gl_FragColor=vec4(outColor*0.25, 1.0);

}

54 APPENDIX A. SHADER SOURCE CODES

A.5 Fragment Shader for Stereo Matching
#define SAMPLES 5

uniform sampler2D referenceImage;

uniform sampler2D secondImage;

uniform sampler2D lastDepth;

uniform sampler2D projectiveTextureCoordinates;

uniform int steps;

uniform int level;

uniform float searchRange;

#if SAMPLES==1

const int samples = 1;

#else

#if SAMPLES==5

const int samples = 5;

#else

const int samples = 9;

#endif

#endif

vec2 texCoords[samples];

vec4 projTexCoords[4];

// lookup texture coordinates for projective texture

void lookupTexCoords(float pos)

{

projTexCoords[0]=texture2D(projectiveTextureCoordinates,

vec2((0.25+pos)/float(steps), 0.25));

projTexCoords[1]=texture2D(projectiveTextureCoordinates,

vec2((0.25+pos)/float(steps), 0.75));

projTexCoords[2]=texture2D(projectiveTextureCoordinates,

vec2((0.75+pos)/float(steps), 0.25));

projTexCoords[3]=texture2D(projectiveTextureCoordinates,

vec2((0.75+pos)/float(steps), 0.75));

}

// interpolate texture coordinates

vec4 getTexCoord(int sample)

{

return mix(mix(projTexCoords[0], projTexCoords[1], texCoords[sample].y),

mix(projTexCoords[2], projTexCoords[3], texCoords[sample].y),

texCoords[sample].x);

}

// calculate the difference value of 2 colors

float differenceValue(vec3 color1, vec3 color2)

{

A.5. FRAGMENT SHADER FOR STEREO MATCHING 55

vec3 diff=color1-color2;

return dot(diff, diff);

}

void main()

{

vec3 color1[samples];

vec3 color2[samples];

float deltaX=dFdx(gl_TexCoord[0].x);

float deltaY=dFdy(gl_TexCoord[0].y);

texCoords[0]=gl_TexCoord[0].xy;

#if SAMPLES==4 // 4 samples

texCoords[1]=texCoords[0]+vec2(deltaX, deltaY);

texCoords[2]=texCoords[0]+vec2(deltaX, 0);

texCoords[3]=texCoords[0]+vec2(0, deltaY);

#else

#if SAMPLES==5 // 5 samples

texCoords[1]=texCoords[0]+vec2(deltaX, 0);

texCoords[2]=texCoords[0]+vec2(0, deltaY);

texCoords[3]=texCoords[0]-vec2(deltaX, 0);

texCoords[4]=texCoords[0]-vec2(0, deltaY);

#else // 9 samples

texCoords[1]=texCoords[0]+vec2(deltaX, 0);

texCoords[2]=texCoords[0]+vec2(0, deltaY);

texCoords[3]=texCoords[0]-vec2(deltaX, 0);

texCoords[4]=texCoords[0]-vec2(0, deltaY);

texCoords[5]=texCoords[0]+vec2(deltaX, deltaY);

texCoords[6]=texCoords[0]+vec2(-deltaX, deltaY);

texCoords[7]=texCoords[0]+vec2(deltaX, -deltaY);

texCoords[8]=texCoords[0]+vec2(-deltaX,-deltaY);

#endif

#endif

for(int i=0; i<samples; i++)

color1[i]=texture2D(referenceImage, texCoords[i], 0.0).rgb;

float bestDiff=1000.0;

float bestQuadPos=floor(texture2D(lastDepth, texCoords[0]).a);

float start_quad_pos=bestQuadPos;

for(float pos=0.0; pos<=searchRange; pos+=1.0)

for(float s=-1.0; s<=1.0; s+=2.0) // set sign to -/+ for alternating search

{

float quad_pos=pos*s;

float diff=0.0;

float new_quad_pos=clamp(start_quad_pos+quad_pos, 0.0, float(steps));

lookupTexCoords(new_quad_pos);

56 APPENDIX A. SHADER SOURCE CODES

for(int i=0; i<samples; i++)

{

color2[i]=texture2DProj(secondImage, getTexCoord(i), 0.0).rgb;

diff+=differenceValue(color1[i], color2[i]);

}

if(diff<bestDiff)

{

bestDiff=diff;

bestQuadPos=new_quad_pos;

}

}

gl_FragColor.a=(level!=0)?bestQuadPos:1.0-bestQuadPos/float(steps);

}

A.6. FRAGMENT SHADER FOR MEDIAN FILTERING 57

A.6 Fragment Shader for Median Filtering
uniform sampler2D texture;

void main()

{

float xoff = dFdx(gl_TexCoord[0].x);

float yoff = dFdy(gl_TexCoord[0].y);

// 9x9 median filter:

vec2 texcoords[9]={

gl_TexCoord[0].xy+vec2(0, 0),

gl_TexCoord[0].xy+vec2(0, yoff),

gl_TexCoord[0].xy+vec2(xoff, 0),

gl_TexCoord[0].xy+vec2(xoff, yoff),

gl_TexCoord[0].xy+vec2(-xoff, -yoff),

gl_TexCoord[0].xy+vec2(-xoff, 0),

gl_TexCoord[0].xy+vec2(-xoff, yoff),

gl_TexCoord[0].xy+vec2(0, -yoff),

gl_TexCoord[0].xy+vec2(xoff, -yoff)

};

float values[9];

for(int i=0; i<9; i++)

values[i]=texture2D(texture, texcoords[i]).a;

float a, b;

for(int i=0; i<8; i++)

{

a=values[i];

b=values[i+1];

values[i] =min(a,b);

values[i+1]=max(a,b);

}

for(int i=0; i<7; i++)

{

a=values[i];

b=values[i+1];

values[i] =min(a,b);

values[i+1]=max(a,b);

}

for(int i=0; i<6; i++)

{

a=values[i];

b=values[i+1];

58 APPENDIX A. SHADER SOURCE CODES

values[i] =min(a,b);

values[i+1]=max(a,b);

}

for(int i=0; i<5; i++)

{

a=values[i];

b=values[i+1];

values[i] =min(a,b);

values[i+1]=max(a,b);

}

for(int i=0; i<4; i++)

{

a=values[i];

b=values[i+1];

values[i] =min(a,b);

values[i+1]=max(a,b);

}

gl_FragColor.a=values[4]; //median

}

A.7. VERTEX SHADER FOR MESH WARPING 59

A.7 Vertex Shader for Mesh Warping
#version 110

uniform sampler2D depthMap;

uniform int refCam;

void main()

{

vec2 texcoord = gl_Vertex.xy*0.5+vec2(0.5);

vec4 color;

vec4 worldpos;

vec4 vertex=gl_Vertex;

color=texture2DLod(depthMap, texcoord, 0.0);

vertex.z=color.a*2.0-1.0;

if(refCam==0)

worldpos = gl_TextureMatrixInverse[3]

* (gl_TextureMatrixInverse[2]*vertex);

else

worldpos = gl_TextureMatrixInverse[5]

* (gl_TextureMatrixInverse[4]*vertex);

gl_Position=gl_ModelViewProjectionMatrix * worldpos;

gl_FrontColor=color;

}

60 APPENDIX A. SHADER SOURCE CODES

Bibliography

[1] Jean-Yves Bouguet. Camera Calibration Toolbox for Matlab. Intel Corp.
http://www.vision.caltech.edu/bouguetj/calib doc.

[2] Ed Catmull. A Subdivision Algorithm for Computer Display of Curved Sur-
faces. PhD thesis, University of Utah, 1974.

[3] Cass Everitt. Projective Texture Mapping. NVidia Corp.
http://developer.nvidia.com/object/Projective Texture Mapping.html.

[4] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach.
Prentice Hall, 2002.

[5] Simon Green. NVidia OpenGL Update.
NVidia Corp., gdc 2005 presentations edition.
http://download.nvidia.com/developer/presentations/2006/gdc/2006-
GDC OpenGL NV exts.pdf.

[6] Point Grey Research Inc. http://www.ptgrey.com.

[7] John Kessenich. The OpenGL Shading Language.
3Dlabs, Inc. Ltd., version 1.20 edition, September 2006.
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf.

[8] R. Klette, K. Schlüns, and A. Koschan. Computer Vision: Three-
Dimensional Data from Images. Springer, 1998.

[9] Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching. Addison-Wesley, 1997.

[10] A. Koschan, V. Rodehorst, and K. Spiller. Color stereo vision using hierar-
chical block matching and active color illumination. In Proc. 13th Int. Conf.
on Pattern Recognition ICPR96, Vienna, Austria, Vol. I, pp. 835-839, 1996.

61

http://www.vision.caltech.edu/bouguetj/calib_doc
http://developer.nvidia.com/object/Projective_Texture_Mapping.html
http://download.nvidia.com/developer/presentations/2006/gdc/2006-GDC_OpenGL_NV_exts.pdf
http://download.nvidia.com/developer/presentations/2006/gdc/2006-GDC_OpenGL_NV_exts.pdf
http://www.ptgrey.com
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf

62 BIBLIOGRAPHY

[11] Ming Li. Correspondence analysis between the image formation pipelines
of graphics and vision. In Snchez J. Salvador and Pla Filiberto, editors, Pro-
ceedings of the IX Spanish Symposium on Pattern Recognition and Image
Analysis, pages 187–192, Benicasim(Castelln), Spain, May 2001. Universi-
tat Jaume I, Publications de la Universitat Jaume I.

[12] Sébastien Roy and Marc-Antoine Drouin. Non-uniform hierarchical pyra-
mid stereo for large images. In Proceedings of the Vision, Modeling, and Vi-
sualization Conference 2002 (VMV 2002), Erlangen, Germany, pages 403–
410, 2002.

[13] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. In Proceedings of the
IEEE Workshop on Stereo and Multi-Baseline Vision, Kauai, HI, 2001.

[14] Daniel Scharstein and Richard Szeliski. Middlebury stereo vision page.
http://www.middlebury.edu/stereo.

[15] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A
Specification. Silicon Graphics, Inc., version 2.1 edition, July 2006.
http://www.opengl.org/documentation/specs/version2.1/glspec21.pdf.

[16] Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis. OpenGL Pro-
gramming Guide. Addison-Wesley Longman, 5th edition, 2005.

[17] Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3-D
Computer Vision. Prentice Hall, 1998.

[18] Liang Wang, Miao Liao, Minglun Gong, Ruigang Yang, and David Nister.
High-quality real-time stereo using adaptive cost aggregation and dynamic
programming. In Third International Symposium on 3D Processing, Visual-
ization and Transmission (3DPVT 2006), June 2006.

[19] Ruigang Yang and Marc Pollefeys. A versatile stereo implementation on
commodity graphics hardware. Real-Time Imaging, 11(1):7–18, 2005.

[20] C. Zach, A. Klaus, M. Hadwiger, and K. Karner. Accurate dense stereo
reconstruction using graphics hardware, 2003.

[21] Gernot Ziegler, Lukas Heidenreich, Marcus Magnor, and Hans-Peter Seidel.
Geocast: Unifying depth video with camera meta-data. In 2nd Workshop on
Immersive Communication and Broadcast Systems, Berlin, Germany, Octo-
ber 2005. Fraunhofer Institute, Heinrich-Hertz-Institute.

http://www.middlebury.edu/stereo
http://www.opengl.org/documentation/specs/version2.1/glspec21.pdf

	Abstract
	Acknowledgment
	Introduction
	Background
	The Camera Model
	Radial Lens Distortion
	Epipolar Stereo Geometry
	General Setup
	Parallel Setup
	Image Rectification

	OpenGL API
	Processing Pipeline
	Vertex and Fragment Shader
	Coordinate Systems
	Projective Texture Mapping
	Mipmaps
	Framebuffer Objects
	Image Processing

	Related Work
	Overview
	Hierarchical and GPU based algorithms

	Camera Calibration
	Matlab Camera Calibration Toolbox
	GeoCast
	Converting camera parameters to GeoCast
	Lens distortion parameters in GeoCast

	The Stereo Matching Algorithm
	Image Ray Color Values
	Projective Texturing Precomputation
	Restricting Search Space
	Preprocessing of Input Data
	Stereo Matching
	Matching Cost Calculation
	Depth Map Postprocessing

	Scene Reconstruction
	Disparity Maps

	Results
	Middlebury Data Set
	Synthetic Data
	Video Data

	Conclusion and Future Work
	Shader Source Codes
	Vertex Shader for positioning the sweeping rectangle
	Fragment Shader for Coordinates Precomputation
	Fragment Shader for Radial Undistorting
	Fragment Shader for Mean Filtering
	Fragment Shader for Stereo Matching
	Fragment Shader for Median Filtering
	Vertex Shader for Mesh Warping

